The SynQor 3-Phase PFC contains a serial port to facilitate system monitoring.

Commands are sent to request individual data, the PFC responds to each command individually.

The PFC's external serial port IO pins are at 3.3V logic levels, not RS232 levels.

See the device datasheet for IO pin level & polarity details.

Commercial data converters are available to translate these levels to RS232 or USB.

The serial port uses 9600 baud, 8 data bits, no parity, and one stop bit. Commands can be sent, and output viewed, with any standard terminal emulator. The interface is case sensitive. To view user text, set the terminal emulator for local echo.

Some data are writeable; written values are, however, volatile and will revert to default upon power cycling.

A pause of >5 seconds between any two comand characters will timeout/reset the command parser. No response is generated.

This timeout value is user settable - see Hung Parser Timeout below.

The protocol supports communication to/from individual modules on a shared serial bus via a unique 'network address'.

(See the Enumerate command, available in models featuring a START SYNC control pin)

In this document, the symbol ∠ will be used to represent ascii 13 (cr) OR ascii 10 (lf) OR both (they're all equivalent).

Value Formats

Data supplied to, and returned from, the PFC can be communicated in several formats, broadly divided into strings and numeric values. While strings are a unique type, numeric data can be further divided into serveral interchangeable formats.

Strings	Up to 64 ascii characters, and "enclosed in double quotes". A null string is "". Strings can contain unprintable and					
		ol characters which can, of course, affect the appearance of any terminal emulator receiving them.				
	Fmt	Numeric Range	Description			
ts	char	0 to 127	An ascii character, preceeded by single quote character ' to remove ambiguity. Response			
mats	Cilai		char format will always contain the ' prefix.	contain the ' prefix.		
	hex	0x0 to 0xFFFF	0x and then zero to four ascii hex characters	Hex, U int, and int formats have no		
_	U int	0 to 65535	Unsigned decimal numeral, optionally preceeded by 'u'	internal units conversion		
l ii	int	-32768 to 32767	Signed decimal numeral, specified by '+' or '-' prefix			
umerical			Decimal numerals containing a decimal point are interpreted as real MKS values and are			
ž	mks	±###.#	internally converted to/from machine units. MKS values ar	e naturally signed. MKS format is		
			recommended whenever referring to a real-life datum.			

Command Formats

Both data read and data write commands are supported

Data Write Command Syntax

{Net Addr}	{Access Address}	{Action Specifier}	{Write Value}	{Terminator}
m	0-127	=	"String" or	(cr) or (If)
•••	0-127	-	16-bit numerical	or both, ∠

Net Addr: The network address character, which takes a default value of 'm on power-up. 'A thru 'z is a single unit's address, while '@ is interpreted as all units. To avoid collision, the response to '@ commands is automatically muted.

See the Enumerate command to automatically assign unique network addresses for multi-unit applications.

Access Addr: The address to write, see table below.

Addresses can be specified in char, hex, or int formats, see Value Formats below.

Action Specifier: The = character specifies a data write command.

Only select addresses are writeable.

Write Value: Values to write can be supplied in the formats described below;

The supplied format will determine the format of the response datum.

Terminator: a carriage return character (cr) = ascii 13, OR a linefeed character (lf) = ascii 10, OR both ∠.

Data Read Command Syntax

Net Addr: The network address character, which takes a default value of 'm on power-up.

while valid, the '@ address mutes responses to avoid collision; it's not useful for read operations.

See the Enumerate command to automatically assign unique network addresses for multi-unit applications.

Access Addr: The address to read, see table below.

Addresses can be specified in char, hex, or int formats, see Value Formats below.

Action Specifier: The ? character specifies a data read command.

Format: The numerical response datum format of a read command can be controlled by supplying the command with an argument value of 0. The format of the 0 specifies the desired return datum format (see table below). In the absence of a 0 argument, the datum is returned in its natural or mks format.

Terminator: a carriage return character (cr) = ascii 13, OR a linefeed character (lf) = ascii 10, OR both ∠.

Examples of controllin	g the return datum format of read commands		
m46?✓	No value supplied, return datum in default (mks or natural) format		
m46?0.∠	Value of 0 supplied in mks, return in mks/natural format		
m46?.∠			
m46?0∠	Unsigned value of 0 supplied, return as unsigned int.		
m46?u0✓			
m46?u∠			
m46?+0√	Signed value of 0 supplied, return as signed int.		
m46?+√	Signed value of o supplied, return as signed inc.		
m46?0x✓	Value of 0 supplied in hex, return in hex.		
m46?x✓	value of o supplied in hea, return in hea.		

Response Format

Immediately after reception of its terminator, each valid command generates a response.

Invalid commands do not generate a response.

Response Syntax

{Net addr} {Access Address} {Is Now} {Value} {Terminator}

m 0-127 = "String" or
16-bit numerical

Net Addr: The PFCs echoes its network address, 'm in the example above.

Access Address: Echo of the address specifier in the same format as supplied.

Char addresses will be prefixed by '.

Is Now: The character '='

Value: The address's current value.

See above for descriptions of the return datum format to both read and write commands.

Char format will always contain leading ', hex format will always contain 0x and four ascii hex value characters.

Terminator: ∠ concludes the response

Addresses

The following table contains a summary of the addressesthat contain useful data.

Acce	ess Add	ress	Name	Read /	Natural	Natural
hex,	dec,	or char			Units	
0x0	0		ID String	R	string	
0x1	1		Part Number	R	string	
0x2	2		Serial Number	R	string	
0xC	12		Build Revision	R	hex	
0xD	13		Code Revision	R	string	
0x2E	46		Code Revision	R	hex	Rev<<8 Subrev
0x21	33	!	Net Address	R	quoted cha	racter
0x22	34	"	Hung Parser Timeout	R/W	##.#	seconds
0x23	35	#	Powered Days	R/W	int	days
0x24	36	\$	Powered Hours	R/W	int	hours
0x25	37	%	Powered Minutes	R/W	int	minutes
0x26	38	&	Powered Seconds	R/W	##.#	seconds
0x41	65	Α	Auto Command String	R/W	string	
0x61	97	а	Auto Command Interval	R/W	##.#	seconds
0x45	69	E	Enumerate Network Address	R/W	int	
0x46	70	F	AC Input Line Frequency	R	##.#	Hz
0x53	83	S	AC Input Voltage	R	###.#	Volts
0x73	115	s	AC Input Voltage Ripple/Imbalance	R	###.#	Volts
0x76	118	v	Midbus (Buck Stage) Output Voltage	R	###.#	Volts
0x69	105	i	Buck Stage Output Current	R	#.##	Amperes
0x70	112	р	Buck Stage Output Power	R	####	Watts
0x49	73	1	Boost Stage Input Current	R	#.##	Amperes
0x50	80	Р	Boost Stage Input Power	R	int	Watts
0x56	86	V	Boost Output Voltage	R	###.#	Volts
0x54	84	Т	PCB Temperature	R	##.#	°C
0x4D	77	М	Machine State	R	int	
0x4E	78	N	PFC ENA Pin Override	R/W	int	
0x6E	110	n	Battle Short Mode Enable	R/W	int	
0x63	99	С	AC Line Status	R	hex	
0c65	101	е	Stop Status	R	hex	
0x77	119	w	BS Warnings	R	hex	

Address Details

hex decimal char Address:

0x00

Name: **ID String**

The unit's ID string "Syngor 3PH PFC" **Description:**

Response units: Read/Write: Read Only

Example Cmd: Typical Response:

m0x0000= "Syngor 3PH PFC"∠ m0x0?∠ m0= "Synqor 3PH PFC"∠ m0?∠

> decimal hex char Address:

0x1 1 Name: **Part Number**

The part number "MPFC-115-3PH-270-FP" or "MPFC-115-3PH-270P-FP" **Description:**

Response units: string Read/Write: Read Only

Example Cmd: Typical Response:

m0x0001= "MPFC-115-3PH-270-FP"✓ m0x1?∠ m1= "MPFC-115-3PH-270-FP"✓ m1?∠

hex decimal char Address:

0x2 2

Name: **Serial Number**

Description: The unit's serial number, factory assigned in sequential order

Response units: String Read/Write: Read Only

Example Cmd: Typical Response:

m0x0002= "S17139017"✓ m0x2?∠ m2= "S17139017"√ m2?∠

> hex decimal char Address:

12

0xC

Build Revision Name:

The unit's Build Revision **Description:**

Natural Response units: hex

Read/Write: Read Only

Typical Response: Example Cmd:

m0x000C= 0x00002 m0xC?∠ m12= 0x00004 m12?∠

Address: hex decimal char

0xD 13

Name: Code Revision as a string

Description: The unit's Code Revision

Response units: string
Read/Write: Read Only

Example Cmd: Typical Response:

m0xD?\(\) m0x000D= "Rev 5, v26.6"\(\) m13?\(\) m13= "Rev 5, v26.6"\(\)

Address: hex decimal char ox2E 46 .

Name: Code Revision as a number

Description: The unit's Code Revision

Natural Response units: hex

Read/Write: Read Only

Discussion: Code Revision is returned as MainRev<<8 | Subrev

Example Cmd: Typical Response: Interpretation:

m.? \subseteq m'.= 0x1A06 \subseteq 0x1A00 = 26<<8 | 6 Code Rev is 26.6 m.?0 \subseteq m'.= 6662 \subseteq 6662 = 26*256 + 6 Code Rev is 26.6

Address: hex decimal char ox21 33 !

Name: Net Address

Description: Returns unit's Network Address as a quoted character

Natural Response units: quoted character, 'm by default

Read/Write: Read Only

Example Cmd: Typical Response:

 $m0x21?\checkmark$ $m0x0021= 'm\checkmark$
 $m33?\checkmark$ $m33= 'm\checkmark$
 $m!?\checkmark$ $m'!= 'm\checkmark$

hex decimal char Address:

0x22 34

Hung Parser Timeout Name: The Hung Parser Timeout **Description:**

decimal seconds **Natural Response units:**

Read/Write: Read/Write

Discussion: A delay of >N.N seconds between any two command characters will reset the command parser.

This paramter controls the timeout value. It is both readable and writeable.

Supplied in hex or int format, the units are integer 1/16ths of second.

Supplied in MKS format, the units are decimal seconds.

Example Cmd: Typical Responses: Interpretation:

Parser timeout is 5.0 seconds (default) m0x22?∠ $m0x0022 = 5.0 \angle$ m"=60∠ m'"= 60∠ (Note int units supplied) Parser timeout set to 60/16 = 3.75 secs.

m'"= 3.75∠ m"=?∠ Confirm 3.75 sec timeout in MKS units.

m34=60.∠ m34= 60.0∠ (Note MKS units supplied) Parser timout re-set to one minute

decimal 0-59.9

hex decimal char Response units **Powered Days** 0x23 35 # Read/Write int 0-65535 **Powered Hours** \$ Read/Write 0x24 36 int 0-23 Read/Write **Powered Minutes** 0x25 37 % int 0-59 **Powered Seconds** Read/Write

&

Togethe Discussion:

They

0x26

38

Example Cmds: Typical Responses: Interpretation:

m35?∠ m35= 329∠ Unit has been powered for 329 days m36?∠ m36= 3∠ and 3 hours.

m35=0∠ m35= 0∠ Days variable reset to 0. m36=0∠ m36= 0∠ hours variable reset to 0.

hex decimal char Address: 0x41 Name: **Auto Command String**

Description: The Auto Command String will have the PFC send the sama data repeatedly and automatically.

Response units: string Read/Write: Read/Write

> Discussion: The AutoCommandString is written to contain the exact commands to read the desired data. The string's

> > contents are copied directly to the command parser input at an interval given by the Auto Command Interval, see below. This command should only be used with a single unit to avoid response data collisions.

Example Cmd: Typical Responses: Interpretation:

m'A= ""✓ mA?∠ The Auto Command String is empty. $mA="mS? \angle mF? \angle mP? \angle " \angle$ m'A= "mS?\sigmams?\sigmamF?\sigmamP?\sigma"\sigma Write the auto command string with:

Read AC Input Voltage, Read AC Line Frequency, Read Boost Stage Power.

065-0000058 Rev 3 6/20/2017 Page 6 of 12

Address: hex decimal char

0x61 97 a

Name: Auto Command Interval

Description: Controls how often the Auto Command String is executed.

Response units: decimal seconds
Read/Write: Read/Write

Discussion: A value of 0 (default) turns OFF Auto Command execution

The range of active values is from 1 to 65535 1/16ths of a second, a bit over an hour. If the value is supplied in hex or int formats, the units are 1/16ths of a second

If the value is supplied in MKS format, the units are decimal seconds.

Example Cmd: Typical Responses: Interpretation:

ma? \checkmark m'a= $0\checkmark$ Auto Command is OFF

ma=0.5∠ m'a= 0.5∠ Execute Auto Command String every half second

Address: hex decimal char 0x45 69 E

Name: Enumerate Network Address

Description: Enumeration automatically sets the network address of each unit in a multi-unit application.

Write Value Argument: The value of the first adddress to be auto-assigned (when after = sign, char format must include leading ').

Read Response value: The number of sequential addresses just assigned.

Read Response units: int

Read/Write: R/W

Discussion: At power-up, network address for each unit is reset to 'm. While that's sufficient for single-unit applications

a response collision would occur if multiple units shared the default 'm address.

Upon receiving an Enumerate command, all addressed units will communicate over their interconnected StartSync line and assign themselves unique sequential network addresses.

Note that the units must be disabled to communicate over StartSync.

Enumerated addresses are volatile; they will revert to the default 'm whenever power is cycled.

Example Cmd: Typical Responses: Interpretation:

@E='A \checkmark none (response muted for global addr @) Enumerate network addresses, begin assignments at 'A A' E=5 \checkmark Unit A, how many addrs were assigned. Answer=5

Host now knows that there are 5 units on the network; their addresses are A, B, C, D, & E.

Host can now communcate with them individually using any other command

unit A: what is your serial number?	A0x0002= "S17139017"∠	A0x2?∠
unit B: what is your serial number?	B0x0002= "S15930713"✓	B0x2?∠
unit C: what is your serial number?	C0x0002= "S17166150"∠	C0x2?∠
unit D: what is your serial number?	D0x0002= "S15922316"∠	D0x2?∠
unit E: what is your serial number?	E0x0002= "S15922317"✓	E0x2?∠

Address: hex decimal char

0x46 70 F

Name: AC Input Line Frequency

Description: The AC Line Frequency

Natural Response units: decimal Hz
Read/Write: Read Only

Discussion: The accuracy of this measurement is limited by that of the internal timebase, which has a ±2% rating.

Negative values indicate CBA rotation

Example Cmd: Typical Responses: Interpretation:

 $m0x46? \checkmark$ $m0x0046=59.9 \checkmark$ 60 Hz

 $m70? \checkmark$ $m70=400.2 \checkmark$ 400 Hz

 $mF? \checkmark$ $m'F=-60.1 \checkmark$ 60 Hz, CBA

Address: hex decimal char

0x53 83 S

Name: AC Input Voltage

Description: The AC **Natural Response units:** decimal Volts

Read/Write: Read Only

Discussion: The value is the peak L-N voltage; divide by V2 to obtain rms.

Example Cmd: Typical Response: Interpretation:

mS?✓ m'S= 169.2✓ The L-N AC input voltage is 169 Vpk = 115 Vrms

Address: hex decimal char

0x73 115 s
Name: AC Input Voltage Ripple/Imbalance

Description: The AC Input Voltage Ripple/Imbalance

Natural Response units: decimal pk-pk Volts.

Read/Write: Read Only

Discussion: Unequal line amplitudes and non-ideal phase angles appear as ripple in the 3-phase line voltage.

Example Cmd: Typical Response: Interpretation:

ms? \checkmark m's= 2.2 \checkmark There's 2.2V p-p of imbalance in the L-N voltages.

Address: hex decimal char 0x76 118 v

Name: Midbus (Buck Stage) Output Voltage

Description: The +Midbus output voltage

Natural Response units: decimal Volts DC

Read/Write: Read Only

Discussion:

Example Cmd: Typical Response: Interpretation:

mv?✓ m'v= 205.1✓ The Midbus output voltage is 205.1 VDC

Address: hex decimal char

0x69 105 i

Name: Buck Stage Output Current

Description: The Buck-Stage output current

Natural Response units: decimal Amperes DC

Read/Write: Read Only

Discussion:

Example Cmd: Typical Response: Interpretation:

mi?✓ m'i= 3.21✓ The buck stage is delivering 3.21 Adc (out)

Address: hex decimal char ox70 112 p

Name: Buck Stage Output Power

Description: Returns the Buck-Stage output power

Natural Response units: Watts

Read/Write: Read Only

Discussion:

Example Cmd: Typical Response: Interpretation:

mp?∠ m'p= 658∠ The buck stage is processing 658 W

Address: hex decimal char

0x49 73 I

Name: Boost Stage Input Current

Description: The Boost-Stage **input** current (for approximate output current, multiply by 0.985*Vmidbus/Vout)

Natural Response units: decimal Amperes DC

Read/Write: Read Only

Discussion:

Example Cmd: Typical Response: Interpretation:

mI? \checkmark m'I= 3.2 \checkmark The boost stage is also handling 3.2 A (in)

Address: hex decimal char

0x50 80 P

Name: Boost Stage Input Power

Description: The Boost-Stage input power

Natural Response units: Watts

Read/Write: Read Only

Discussion:

Example Cmd: Typical Response: Interpretation:

mP? \checkmark m'P= 650 \checkmark The boost stage is also drawing 650 W in.

065-0000058 Rev 3 6/20/2017 Page 9 of 12

Name: Boost Output Voltage

Description: The Boost-Stage output voltage

Response units: decimal Volts DC Read/Write: Read Only

Discussion:

Example Cmd: Typical Response: Interpretation:

mV? \checkmark m'V= 260.2 \checkmark The boost stage is producing 260.2 VDC.

Address: hex decimal char 0x54 84 T

Name: PCB Temperature

Description: The unit's internal temperature

Natural Response units: signed decimal °C

Read/Write: Read Only

Discussion:

Example Cmd: Typical Response: Interpretation:

mT? \checkmark m'T= 63.5 \checkmark The PFC is at about 63 °C internally

Address: hex decimal char 0x4D 77 M

Name: Machine State

Description: The present operational state number of the PFC

Responses: 1 Waiting for all conditions to be ready to start

StartingRunningStopping

5 Waiting for auto-restart timeout

Natural Response units: int

Read/Write: Read Only

Discussion:

Example Cmd: Typical Response: Interpretation:

mM?∠ m'M= 3∠ The PFC is Running

Address: hex decimal char

0x4E 78 N

Name: PFC ENA Pin Override

Description: Allows overriding the PFC ENA pin via serial interface

Response units: int

Read/Write: Read / Write

Discussion: value of 10 (0xA) allows unit operation to follow PFC ENA pin [default]

writing value of 11 (0xB) overrides PFC ENA pin and forces the unit ON writing a value of 12 (0xC) overrides PFC ENA pin and forces the unit OFF

Example Cmd: Typical Response: Interpretation:

mN? \slash unit m is obeying PFC ENA pin

@N=11∠ none (response muted for global addr @) Everyone: Ignore PFC ENA pin value and turn ON mN=12∠ unit m, Ignore the PFC ENA pin value and turn OFF.

Address: hex decimal char
0x6E 110 n

Name: Battle Short Mode Enable

Description: Allows engaging Battle Short mode via serial interface

Natural Response units: hex

Read/Write: Read/Write

Discussion: value of 10 (0xA) allows Battle Short mode to follow BS Pin [default]

writing value of 11 (0xB) turns on Battle short mode regardless of BS Pin value

Example Cmd: Typical Response: Interpretation:

mn?∠ m'n= 0x000A∠ unit m is obeying BS pin

@n=11∠ none (response muted for global addr @) Everyone: Battle Short Mode = On

mn=10∠ m'n= 10∠ unit m, obey BS pin again

Address: hex decimal char ox63 99 c

Name: AC Line Status

Description: Status

Responses: bit 0 AC Line Voltage has excessive imbalance

bit 1 AC Line Frequency is outside normal ranges

bit 2 AC Line Voltage is <80 Vrms L-N

bit 3 AC Line Voltage is >145 Vrms L-N

Natural Response units: hex

Read/Write: Read Only

Discussion: Any bit set indicates an out-of-range condition for the AC Line

Example Cmd: Typical Response: Interpretation:

mc? \checkmark m'c= 0x0004 \checkmark AC Line voltage is low

Address: hex decimal char

0c65 101 e

Name: Stop Status

Description: Status bits that indicate a no-operate condition

Responses: bit 0 NA

bit 1 Over Temperaturebit 2 Midbus short timeout

bit 3 Low bias suppply output voltage

bit 4 NA bit 5 PFC ENA bit 6 NA

bit 7 Fast Overcurrent detect

bit 8 NA

bit 9 Low bias supply input voltage

Natural Response units: hex

Read/Write: Read Only

Discussion: Any bit set indictates why the unit shut down (or will not start).

Example Cmd: Typical Response: Interpretation:

mc? \checkmark m'c= $0 \times 0020 \checkmark$ PFC ENA set to OFF

Name: BS Warnings

Description: Status bits associated with the BATTLE SHORT pin (warnings)

Responses: bit 0 NA

bit 1 Warn Over Temperature

bit 2 NA bit 3 NA

bit 4 Warn AC Line Imbalance.

Natural Response units: hex

Read/Write: Read Only

Discussion: These flags indicate the reason the BATTLE SHORT pin internal pull-down transistor has been turned off

Example Cmd: Typical Response: Interpretation:

mw?∠ m'w= 0x0002∠ Battle Short Warning is due to temperature